Sunday 12 July 2015

Comparison between HAMR and MAMR

3        Comparison between HAMR and MAMR

Both shared a similar characteristic, which is high effective writing field gradient can
achieved. The effective writing field gradient is no longer contribute from the magnetic character of the recording head but is determined by the external assisted energy.
            For HAMR to be in product state, the thermal issues, optical issues need to solve and the way to integrate the laser source to the recording head also need to determine.
            While for MAMR, in order to be in product state, more practical research on STO is required. The most disadvantage of MAMR is that the Ku(FGL) µ Hk2(media).



References
[1]   R. H. Victora, et al., “Areal Density Limits for Perpendicular Magnetic Recording,” IEEE Trans. Magn., Vol. 38, No. 5 2002.
[2]   H. N. Bertram and M. Williams, “SNR and Density Limit Estimates: A Compararison of Longitudinal and perpendicular Recording,” IEEE Trans. Magn., Vol. 36, No. 1 Jan 2000.
[3]   Roger Wood, “The Feasibility of Magnetic Recording at 1 Terabit per Square Inch,” IEEE Trans. Magn., Vol. 36, No. 1 Jan 2000.
[4]   W. A. Challener, et al., “The Rod to HAMR, FB-2, APMRC 2009, Grand Hyatt Hotel, Singapore, Jan. 14-16, 2009.
[5]   S. M. Mansfield and G. S. Kino, “Solid immersion microscope”, Appl. Phys. Lett., vol. 57, pp. 2615-2616, 2005.
[6]   Mark H. Kryder, et al., “Heat Assisted Magnetic Recording”, Proceedings IEEE, vol. 96, No. 11, November 2008.
[7]   B. X. Xu, et al., “Thermal effects of heated magnetic disk on the slider in heat-assisted magnetic recording”, JAP 99, 2006.
[8]   B. X. Xu, et al., “Characterization of media cross-track thermal profile in heat-assisted magnetic recording”, JMMM 320, pp. 731-735, 2008.
[9]   Z-M Yuan, et al., “Perspectives of Magnetic Recording System at 10 Tb/in2,” FB-1, APMRC 2009, Grand Hyatt Hotel, Singapore, Jan. 14-16, 2009.
[10]           C. M. Cheong, et al., “Density Limit Estimation of Bit Patterned Media without Assisted Writing”, CP-10, Intermag, Sacramento, May 4-8 2009.
[11]           J. Zhu, 50th Ann. Conf. Magn. Magn. Mater. session CC-12 (2005)
[12]           X. Zhu and J. Zhu, Intermag 2006, Session EF-09.
[13]           J. Zhu, et al., “Microwave Assisted Magnetic Recording”, vol. 44, Jan 2008.
[14]           C.K. Goh, Z. Yuan and B. Liu,  “Microwave-Assisted Magnetic Recording at Lower Transverse Oscillating Field”, Conference Magnetism and Magnetic Materials, 2008

[15]           C.K. Goh, Z. Yuan and B. Liu, “Square Microwave-Assisted Magnetic Recording at Lower Frequencies”, APL 2009.

No comments:

Post a Comment